93 research outputs found

    ChatGPT in the context of precision agriculture data analytics

    Full text link
    In this study we argue that integrating ChatGPT into the data processing pipeline of automated sensors in precision agriculture has the potential to bring several benefits and enhance various aspects of modern farming practices. Policy makers often face a barrier when they need to get informed about the situation in vast agricultural fields to reach to decisions. They depend on the close collaboration between agricultural experts in the field, data analysts, and technology providers to create interdisciplinary teams that cannot always be secured on demand or establish effective communication across these diverse domains to respond in real-time. In this work we argue that the speech recognition input modality of ChatGPT provides a more intuitive and natural way for policy makers to interact with the database of the server of an agricultural data processing system to which a large, dispersed network of automated insect traps and sensors probes reports. The large language models map the speech input to text, allowing the user to form its own version of unconstrained verbal query, raising the barrier of having to learn and adapt oneself to a specific data analytics software. The output of the language model can interact through Python code and Pandas with the entire database, visualize the results and use speech synthesis to engage the user in an iterative and refining discussion related to the data. We show three ways of how ChatGPT can interact with the database of the remote server to which a dispersed network of different modalities (optical counters, vibration recordings, pictures, and video), report. We examine the potential and the validity of the response of ChatGPT in analyzing, and interpreting agricultural data, providing real time insights and recommendations to stakeholdersComment: 33 pages, 21 figure

    Two-Dimensional Convolutional Recurrent Neural Networks for Speech Activity Detection

    Get PDF
    Speech Activity Detection (SAD) plays an important role in mobile communications and automatic speech recognition (ASR). Developing efficient SAD systems for real-world applications is a challenging task due to the presence of noise. We propose a new approach to SAD where we treat it as a two-dimensional multilabel image classification problem. To classify the audio segments, we compute their Short-time Fourier Transform spectrograms and classify them with a Convolutional Recurrent Neural Network (CRNN), traditionally used in image recognition. Our CRNN uses a sigmoid activation function, max-pooling in the frequency domain, and a convolutional operation as a moving average filter to remove misclassified spikes. On the development set of Task 1 of the 2019 Fearless Steps Challenge, our system achieved a decision cost function (DCF) of 2.89%, a 66.4% improvement over the baseline. Moreover, it achieved a DCF score of 3.318% on the evaluation dataset of the challenge, ranking first among all submissions

    INSPIRE: Evaluation of a Smart-Home System for Infotainment Management and Device Control

    Full text link
    This paper gives an overview of the assessment and evaluation methods which have been used to determine the quality of the INSPIRE smart home system. The system allows different home appliances to be controlled via speech, and consists of speech and speaker recognition, speech understanding, dialogue management, and speech output components. The performance of these components is first assessed individually, and then the entire system is evaluated in an interaction experiment with test users. Initial results of the assessment and evaluation are given, in particular with respect to the transmission channel impact on speech and speaker recognition, and the assessment of speech output for different system metaphors.Comment: 4 page

    Automatic classification of a taxon-rich community recorded in the wild.

    No full text
    There is a rich literature on automatic species identification of a specific target taxon as regards various vocalizing animals. Research usually is restricted to specific species--in most cases a single one. It is only very recently that the number of monitored species has started to increase for certain habitats involving birds. Automatic acoustic monitoring has not yet been proven to be generic enough to scale to other taxa and habitats than the ones described in the original research. Although attracting much attention, the acoustic monitoring procedure is neither well established yet nor universally adopted as a biodiversity monitoring tool. Recently, the multi-instance multi-label framework on bird vocalizations has been introduced to face the obstacle of simultaneously vocalizing birds of different species. We build on this framework to integrate novel, image-based heterogeneous features designed to capture different aspects of the spectrum. We applied our approach to a taxon-rich habitat that included 78 birds, 8 insect species and 1 amphibian. This dataset constituted the Multi-label Bird Species Classification Challenge-NIPS 2013 where the proposed approach achieved an average accuracy of 91.25% on unseen data

    The Electronic McPhail Trap

    No full text
    Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect’s wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it

    Tracking and Voice Separation of Moving Speakers based on IMM-PDA filters

    No full text
    Abstract- The problem addressed in this work is that of separating the voices of simultaneously active moving speakers using a single microphone array. We adapt the multi-sensor multi-target tracking theory to the context of microphone arrays, in order to form a receptive beam that locks on each moving speaker on an extended time basis and, therefore, achieves voice separation. Our approach (a) incorporates kinematical information of speakers ’ movement by using an interacting multiple model (IMM) estimator per speaker in order to constrain the evolution of Direction of Arrival (DOA) measurements, and (b) can directly account for measurement origin uncertainty by using the probabilistic data association (PDA) technique in conjunction with the IMM estimator. Finally, we demonstrate the function of the gate as a means to initiate and terminate track segments corresponding to phrases

    Annotation sample of the training data under the multi-label framework.

    No full text
    <p>Annotation sample of the training data under the multi-label framework.</p

    Types of anthropogenic and abiotic interfering sounds.

    No full text
    <p>Types of anthropogenic and abiotic interfering sounds.</p

    Probability output for 87 classes of the recording in Fig. 1.

    No full text
    <p>One can clearly discern 3 classes corresponding to the probability peaks in locations 53, 74, 81. From the file of NIPS20134B database annotations the locations 53, 74, 81 indeed correspond to Cicada, Bush Cricket and Eurasian Blackcap.</p
    • …
    corecore